Copied to
clipboard

G = C42.214D6order 192 = 26·3

34th non-split extension by C42 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.214D6, C3⋊C8.17D4, C4.12(S3×D4), (C2×D4).49D6, C4.4D43S3, C12.26(C2×D4), (C2×Q8).63D6, (C2×C12).272D4, C32(C8.12D4), C427S314C2, C6.106(C4○D8), C6.18(C41D4), C2.9(C123D4), (C6×D4).65C22, (C6×Q8).57C22, (C4×C12).108C22, (C2×C12).377C23, C2.25(Q8.13D6), (C2×D12).102C22, (C2×Dic6).107C22, (C4×C3⋊C8)⋊12C2, (C2×D4⋊S3).7C2, (C2×D4.S3)⋊12C2, (C2×C3⋊Q16)⋊13C2, (C3×C4.4D4)⋊3C2, (C2×C6).508(C2×D4), (C2×Q82S3)⋊14C2, (C2×C3⋊C8).253C22, (C2×C4).110(C3⋊D4), (C2×C4).477(C22×S3), C22.183(C2×C3⋊D4), SmallGroup(192,618)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C42.214D6
C1C3C6C12C2×C12C2×D12C427S3 — C42.214D6
C3C6C2×C12 — C42.214D6
C1C22C42C4.4D4

Generators and relations for C42.214D6
 G = < a,b,c,d | a4=b4=c6=1, d2=cbc-1=b-1, ab=ba, cac-1=a-1b2, ad=da, bd=db, dcd-1=b-1c-1 >

Subgroups: 400 in 130 conjugacy classes, 43 normal (31 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C2×C8, D8, SD16, Q16, C2×D4, C2×D4, C2×Q8, C2×Q8, C3⋊C8, Dic6, D12, C2×Dic3, C2×C12, C2×C12, C2×C12, C3×D4, C3×Q8, C22×S3, C22×C6, C4×C8, C4.4D4, C4.4D4, C2×D8, C2×SD16, C2×Q16, C2×C3⋊C8, D6⋊C4, D4⋊S3, D4.S3, Q82S3, C3⋊Q16, C4×C12, C3×C22⋊C4, C2×Dic6, C2×D12, C6×D4, C6×Q8, C8.12D4, C4×C3⋊C8, C427S3, C2×D4⋊S3, C2×D4.S3, C2×Q82S3, C2×C3⋊Q16, C3×C4.4D4, C42.214D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C41D4, C4○D8, S3×D4, C2×C3⋊D4, C8.12D4, C123D4, Q8.13D6, C42.214D6

Smallest permutation representation of C42.214D6
On 96 points
Generators in S96
(1 28 85 90)(2 29 86 91)(3 30 87 92)(4 31 88 93)(5 32 81 94)(6 25 82 95)(7 26 83 96)(8 27 84 89)(9 66 36 73)(10 67 37 74)(11 68 38 75)(12 69 39 76)(13 70 40 77)(14 71 33 78)(15 72 34 79)(16 65 35 80)(17 47 52 62)(18 48 53 63)(19 41 54 64)(20 42 55 57)(21 43 56 58)(22 44 49 59)(23 45 50 60)(24 46 51 61)
(1 7 5 3)(2 8 6 4)(9 15 13 11)(10 16 14 12)(17 23 21 19)(18 24 22 20)(25 31 29 27)(26 32 30 28)(33 39 37 35)(34 40 38 36)(41 47 45 43)(42 48 46 44)(49 55 53 51)(50 56 54 52)(57 63 61 59)(58 64 62 60)(65 71 69 67)(66 72 70 68)(73 79 77 75)(74 80 78 76)(81 87 85 83)(82 88 86 84)(89 95 93 91)(90 96 94 92)
(1 24 67 68 23 2)(3 22 69 66 17 8)(4 7 18 65 70 21)(5 20 71 72 19 6)(9 43 89 26 59 35)(10 34 60 25 90 42)(11 41 91 32 61 33)(12 40 62 31 92 48)(13 47 93 30 63 39)(14 38 64 29 94 46)(15 45 95 28 57 37)(16 36 58 27 96 44)(49 76 73 52 84 87)(50 86 85 51 74 75)(53 80 77 56 88 83)(54 82 81 55 78 79)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,28,85,90)(2,29,86,91)(3,30,87,92)(4,31,88,93)(5,32,81,94)(6,25,82,95)(7,26,83,96)(8,27,84,89)(9,66,36,73)(10,67,37,74)(11,68,38,75)(12,69,39,76)(13,70,40,77)(14,71,33,78)(15,72,34,79)(16,65,35,80)(17,47,52,62)(18,48,53,63)(19,41,54,64)(20,42,55,57)(21,43,56,58)(22,44,49,59)(23,45,50,60)(24,46,51,61), (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,23,21,19)(18,24,22,20)(25,31,29,27)(26,32,30,28)(33,39,37,35)(34,40,38,36)(41,47,45,43)(42,48,46,44)(49,55,53,51)(50,56,54,52)(57,63,61,59)(58,64,62,60)(65,71,69,67)(66,72,70,68)(73,79,77,75)(74,80,78,76)(81,87,85,83)(82,88,86,84)(89,95,93,91)(90,96,94,92), (1,24,67,68,23,2)(3,22,69,66,17,8)(4,7,18,65,70,21)(5,20,71,72,19,6)(9,43,89,26,59,35)(10,34,60,25,90,42)(11,41,91,32,61,33)(12,40,62,31,92,48)(13,47,93,30,63,39)(14,38,64,29,94,46)(15,45,95,28,57,37)(16,36,58,27,96,44)(49,76,73,52,84,87)(50,86,85,51,74,75)(53,80,77,56,88,83)(54,82,81,55,78,79), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)>;

G:=Group( (1,28,85,90)(2,29,86,91)(3,30,87,92)(4,31,88,93)(5,32,81,94)(6,25,82,95)(7,26,83,96)(8,27,84,89)(9,66,36,73)(10,67,37,74)(11,68,38,75)(12,69,39,76)(13,70,40,77)(14,71,33,78)(15,72,34,79)(16,65,35,80)(17,47,52,62)(18,48,53,63)(19,41,54,64)(20,42,55,57)(21,43,56,58)(22,44,49,59)(23,45,50,60)(24,46,51,61), (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,23,21,19)(18,24,22,20)(25,31,29,27)(26,32,30,28)(33,39,37,35)(34,40,38,36)(41,47,45,43)(42,48,46,44)(49,55,53,51)(50,56,54,52)(57,63,61,59)(58,64,62,60)(65,71,69,67)(66,72,70,68)(73,79,77,75)(74,80,78,76)(81,87,85,83)(82,88,86,84)(89,95,93,91)(90,96,94,92), (1,24,67,68,23,2)(3,22,69,66,17,8)(4,7,18,65,70,21)(5,20,71,72,19,6)(9,43,89,26,59,35)(10,34,60,25,90,42)(11,41,91,32,61,33)(12,40,62,31,92,48)(13,47,93,30,63,39)(14,38,64,29,94,46)(15,45,95,28,57,37)(16,36,58,27,96,44)(49,76,73,52,84,87)(50,86,85,51,74,75)(53,80,77,56,88,83)(54,82,81,55,78,79), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,28,85,90),(2,29,86,91),(3,30,87,92),(4,31,88,93),(5,32,81,94),(6,25,82,95),(7,26,83,96),(8,27,84,89),(9,66,36,73),(10,67,37,74),(11,68,38,75),(12,69,39,76),(13,70,40,77),(14,71,33,78),(15,72,34,79),(16,65,35,80),(17,47,52,62),(18,48,53,63),(19,41,54,64),(20,42,55,57),(21,43,56,58),(22,44,49,59),(23,45,50,60),(24,46,51,61)], [(1,7,5,3),(2,8,6,4),(9,15,13,11),(10,16,14,12),(17,23,21,19),(18,24,22,20),(25,31,29,27),(26,32,30,28),(33,39,37,35),(34,40,38,36),(41,47,45,43),(42,48,46,44),(49,55,53,51),(50,56,54,52),(57,63,61,59),(58,64,62,60),(65,71,69,67),(66,72,70,68),(73,79,77,75),(74,80,78,76),(81,87,85,83),(82,88,86,84),(89,95,93,91),(90,96,94,92)], [(1,24,67,68,23,2),(3,22,69,66,17,8),(4,7,18,65,70,21),(5,20,71,72,19,6),(9,43,89,26,59,35),(10,34,60,25,90,42),(11,41,91,32,61,33),(12,40,62,31,92,48),(13,47,93,30,63,39),(14,38,64,29,94,46),(15,45,95,28,57,37),(16,36,58,27,96,44),(49,76,73,52,84,87),(50,86,85,51,74,75),(53,80,77,56,88,83),(54,82,81,55,78,79)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)]])

36 conjugacy classes

class 1 2A2B2C2D2E 3 4A···4F4G4H6A6B6C6D6E8A···8H12A···12F12G12H
order12222234···444666668···812···121212
size111182422···2824222886···64···488

36 irreducible representations

dim111111112222222244
type+++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D6D6D6C3⋊D4C4○D8S3×D4Q8.13D6
kernelC42.214D6C4×C3⋊C8C427S3C2×D4⋊S3C2×D4.S3C2×Q82S3C2×C3⋊Q16C3×C4.4D4C4.4D4C3⋊C8C2×C12C42C2×D4C2×Q8C2×C4C6C4C2
# reps111111111421114824

Matrix representation of C42.214D6 in GL6(𝔽73)

2700000
0270000
0072000
0007200
0000071
0000370
,
010000
7200000
001000
000100
0000720
0000072
,
16160000
16570000
0007200
0017200
000002
0000370
,
16570000
16160000
0017200
0007200
0000071
0000370

G:=sub<GL(6,GF(73))| [27,0,0,0,0,0,0,27,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,37,0,0,0,0,71,0],[0,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[16,16,0,0,0,0,16,57,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,0,37,0,0,0,0,2,0],[16,16,0,0,0,0,57,16,0,0,0,0,0,0,1,0,0,0,0,0,72,72,0,0,0,0,0,0,0,37,0,0,0,0,71,0] >;

C42.214D6 in GAP, Magma, Sage, TeX

C_4^2._{214}D_6
% in TeX

G:=Group("C4^2.214D6");
// GroupNames label

G:=SmallGroup(192,618);
// by ID

G=gap.SmallGroup(192,618);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,344,254,219,1123,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=c*b*c^-1=b^-1,a*b=b*a,c*a*c^-1=a^-1*b^2,a*d=d*a,b*d=d*b,d*c*d^-1=b^-1*c^-1>;
// generators/relations

׿
×
𝔽